Qwen1.5
聊天
模型加载:
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen1.5-0.5B-Chat",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B-Chat")
Prompt:
prompt = "如何使用 Python 写一个 Hello World?"
messages = [
{"role": "system", "content": "你是一个有用的助手。"},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
print(text)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
回答:
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
网络资源
- Qwen1.5 介绍 | Qwen
- 通义千问Qwen-7B效果如何?Firefly微调实践,效果出色
- Qwen (Qwen) HuggingFace
- Fine-tuning and Quantization of Qwen1.5 LLMs on Your Computer
- Qwen
- ssbuild/qwen_finetuning: qwen-7b and qwen-14b finetuning
本文作者:Maeiee
本文链接:Qwen1.5
版权声明:如无特别声明,本文即为原创文章,版权归 Maeiee 所有,未经允许不得转载!
喜欢我文章的朋友请随缘打赏,鼓励我创作更多更好的作品!